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The most common metabolic hallmark of malignant tumors, i.e., the “Warburg effect” is their propen-
sity to metabolize glucose to lactic acid at a high rate even in the presence of oxygen. The pivotal
player in this frequent cancer phenotype is mitochondrial-bound hexokinase [Bustamante E, Pedersen
PL. High aerobic glycolysis of rat hepatoma cells in culture: role of mitochondrial hexokinase. Proc Natl
Acad Sci USA 1977;74(9):3735–9; Bustamante E, Morris HP, Pedersen PL. Energy metabolism of tumor
cells. Requirement for a form of hexokinase with a propensity for mitochondrial binding. J Biol Chem
1981;256(16):8699–704]. Now, in clinics worldwide this prominent phenotype forms the basis of one of
the most common detection systems for cancer, i.e., positron emission tomography (PET). Significantly,
HK-2 is the major bound hexokinase isoform expressed in cancers that exhibit a “Warburg effect”. This
includes most cancers that metastasize and kill their human host. By stationing itself on the outer mito-
chondrial membrane, HK-2 also helps immortalize cancer cells, escapes product inhibition and gains
preferential access to newly synthesized ATP for phosphorylating glucose. The latter event traps this
essential nutrient inside the tumor cells as glucose-6-P, some of which is funneled off to serve as carbon
precursors to help promote the production of new cancer cells while much is converted to lactic acid that
exits the cells. The resultant acidity likely wards off an immune response while preparing surrounding
tissues for invasion. With the re-emergence and acceptance of both the “Warburg effect” as a prominent
phenotype of most clinical cancers, and “metabolic targeting” as a rational therapeutic strategy, a num-
ber of laboratories are focusing on metabolite entry or exit steps. One remarkable success story [Ko YH,
Smith BL, Wang Y, Pomper MG, Rini DA, Torbenson MS, et al. Advanced cancers: eradication in all cases
using 3-bromopyruvate therapy to deplete ATP. Biochem Biophys Res Commun 2004;324(1):269–75] is
the use of the small molecule 3-bromopyruvate (3-BP) that selectively enters and destroys the cells of

large tumors in animals by targeting both HK-2 and the mitochondrial ATP synthasome. This leads to
very rapid ATP depletion and tumor destruction without harm to the animals. This review focuses on
the multiple roles played by HK-2 in cancer and its potential as a metabolic target for complete cancer
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. Isoforms of hexokinase

Hexokinase catalyzes the essentially irreversible first step of the

lycolytic pathway where glucose is phosphorylated to glucose-6-
hosphate (G-6-P) via phosphate transfer from ATP.

lucose+Mg · ATP−→
←

Glucose-6-PO4
2− +Mg · ADP
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The basis for this reaction is the entrapment of G-6-P inside the
cell for commitment to either the glycolytic pathway, primarily for
energy (ATP) generation via glycolysis and oxidative phosphoryla-
tion, or the shunting of this metabolite to the pentose–phosphate
pathway to be utilized mainly for biosynthetic reactions. Mam-
malian tissues harbor four hexokinase isoforms designated as
HK-1-4 [1–3]. Of these, HK-1-3, denoted as “hexokinases”, have an
approximately 250-fold lower Km for glucose (Km =∼0.02 mM) rel-
ative to HK-4, denoted “glucokinase” (Km =∼5 mM) [1–3]. Based on

primary sequence analysis, the hexokinases are postulated to have
arisen via duplication of an ancestral gene similar to the HK-4 gene
[4–7]. Thus, the enzyme HK-4 has a molecular mass of approxi-
mately 50 kDa, while each hexokinase has a molecular mass close
to 100 kDa. HK-1 and HK-2 are localized predominantly on the outer

http://www.sciencedirect.com/science/journal/1044579X
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itochondrial membrane, HK-3 in a perinuclear compartment [3],
nd HK-4 in the cytosol (liver and pancreas).

. Discovery of the exceptional importance of HK-2 to
ancer metabolism, i.e., to the “Warburg effect”

Glucose is an essential metabolite, both as a key source of cellu-
ar energy currency and a precursor carbon source for biosynthesis
anabolism) in mammalian tissues. Most normal tissues metabo-
ize 6-carbon glucose to 3-carbon pyruvate (“glycolysis”) and then
arness the energy within this molecule in the form of ATP via
oxidative phosphorylation” in mitochondria. That is, they oxidize

he pyruvate to CO2 and H2O using the tricarboxylic acid cycle and
he mitochondrial electron transport chain, and then use the resul-
ant free energy to drive the ATP synthasome (ATP Synthase/Pi
arrier/Adenine Nucleotide Carrier complex) to make ATP from
ound ADP and Pi in the presence of Mg++. In sharp contrast, numer-

ig. 1. Metabolic channeling of glucose within a highly glycolytic tumor cell. Glucose brou
y HK-2 bound to VDAC located on the outer mitochondrial membrane. VDAC channels A
ranslocator, ANT; inorganic phosphate carrier, PiC) on the inner mitochondrial membran
f glycolytic metabolism in tumors, and their proliferation capacity, the product G-6-P ra
he pentose–phosphate shunt for biosynthesis of nucleic-acid precursors, and (b) conve
cid is reduced to lactic acid and transported out of the tumor cell via lactate transporter
ith concomitant regeneration of NAD+ within the cells to maintain glycolysis. Some pyru

yruvate transporter on the inner mitochondrial membrane {A}. This provides substrate
mino acid biosynthesis (not shown).
ncer Biology 19 (2009) 17–24

ous tumors by under utilizing their mitochondria rely much more
(sometimes 50–70%) on the far less-efficient glycolytic conversion
of 6-carbon glucose to 3-carbon lactic acid [8]. Significantly, this
occurs even in the presence of ample tissue (tumor) oxygen, i.e.,
under conditions where one would expect pyruvate to enter the
mitochondria with subsequent oxidation to CO2 and H2O. This
unique phenotype, i.e., enhanced metabolism of glucose to lactic
acid even in the presence of oxygen, was first described by Otto
Warburg over 8 decades ago [9] and is commonly referred to as the
“Warburg effect” [8–11] (Fig. 1).

The fundamental protein components that coax malignant
tumors to scavenge and metabolize glucose at an abnormal rate

were discovered over 5 decades later in rigorous biochemical stud-
ies [12,13], the first of which tested the “Warburg effect” of tumors
in the presence of glucose or galactose. Significantly, a much lower
rate of glycolytic conversion to lactic acid was observed with galac-
tose. As the only difference between the two substrates’ metabolism

ght across the plasma-membrane by glucose transporters is rapidly phosphorylated
TP generated by the ATP Synthasome complex (ATP synthase; adenine nucleotide
e, facilitating direct access of ATP to VDAC-bound HK-2. To maintain the high rate

pidly distributes primarily across two key metabolic routes; (a) entry of G-6-P into
rsion of the G-6-P via the glycolytic pathway to pyruvic acid. Most of the pyruvic
s {B}. This promotes an unfavorable environment for the surrounding normal cells
vate is directed to mitochondria across VDAC and via the “as-yet-uncharacterized”
s for the tri-carboxylic acid (TCA) cycle for energy generation, as well as lipid and
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s that glucose enters glycolysis through hexokinase while galac-
ose bypasses this enzyme, it was concluded that glycolysis is
nhanced in malignant tumors by a form of hexokinase. The same
tudy [12] also confirmed that the tumor’s hexokinase is bound
o the mitochondria (outer membrane) allowing it to both escape
otent inhibition by its product G-6-P and obtain preferential access
o newly generated ATP. In the second study [13] it was shown
hat when tumor mitochondria containing bound hexokinase are
dded to liver cytosol lacking mitochondria, this is the only enzyme
ddition necessary to bring this normal tissue’s very low (almost
egligible) glycolytic rate up to the high level catalyzed by the
umor cytoplasm.

Significantly, a later discovery in the same laboratory [14]
ould reveal that HK-2, the predominant isoform over-expressed

n malignant tumors, is strategically located on the outer mitochon-
rial membrane protein “VDAC”, voltage-dependent anion channel
Fig. 1). Here, HK-2 gains both preferential access to mitochondrial
enerated ATP via the mitochondrial adenine nucleotide translo-
ator (ANT), and protection from inhibition by its product G-6-P.
hus, tumors have cleverly overproduced HK-2, and neutralized its
apacity to be controlled thereby forcing the reaction between ATP
nd the incoming glucose to produce G-6-P at a high rate. This in
urn forces glycolysis and biosynthetic metabolic pathways within
umors to function at an enhanced capacity thus providing optimal
upport for uncontrolled tumor proliferation within the host’s tis-
ues [10,14–16]. In addition, the acid secreted by the tumor likely
elps pave the way for this process either by suppressing attacks by
he immune system, preparing normal cells for invasion, or both.

. Key events that led to the discovery that the HK-2
etabolic step can be used for monitoring clinical cancers

ia PET analysis

Subsequent to the discovery in 1977 [12] that a mitochondrial-
ound form of hexokinase is the key player in the “Warburg effect”

n cancer, a newly developed diagnostic tracer technology capital-
zed on this discovery to detect cancers non-invasively in humans.
hus, in 1982 and 1983 a “deoxy” analog of glucose (2-deoxy-d-
lucose) that can be phosphorylated by HK-2 but not metabolized
urther, and that had been labeled with the positron emitter 18F
18FDG), was used successfully to image cancers for the first time
n human patients [17,18]. This imaging technology now widely
nown as positron emission tomography (18FDG-PET) is utilized
orldwide in humans for detecting all types of malignant tumors

nd monitoring their treatment. These “end results” not only con-
rm the universality of the high glycolytic phenotype (“Warburg
ffect”) of such tumors, but also demonstrate how a simple but
ivotal discovery by basic biomedical scientists [12,13] working

ndependently of physicians can lead to clinical applications of pro-
ound utility to the entire world.

. The metabolic rationale for the propensity of tumors to
electively express HK-2

There are three likely reasons: (1) based on the binding affini-
ies described in the “Background”, it is obvious that the selection of
exokinases over glucokinase (HK-4) will be quite favorable from a
etabolic standpoint, as isoforms of the former can harness glu-

ose with over 100-fold higher affinity than the latter enzyme;
2) the selection HK-2 rather than HK-3 and HK-4 is likely due to

he fact that HK-2 in contrast to these isoforms has a N-terminal
ydrophobic domain that allows it to bind to the outer mito-
hondrial membrane VDAC protein(s). Binding of HK-2 to VDAC(s)
rovides several “kinetic benefits” that facilitate the hexokinase
eaction. Thus, HK-2’s binding affinity for ATP is enhanced (∼5-fold)
ncer Biology 19 (2009) 17–24 19

[19]. It becomes insensitive to product (G-6-P) inhibition [12,13],
and it gains preferential access to mitochondrial generated ATP
that likely permeates the VDAC(s) on its way to the cytoplasm
[20]. (3) Considering HK-1 and HK-2, both of which harbor two
glucokinase-equivalent-domains, it is only HK-2 that has retained
catalytic activity in both domains [3]. Therefore, based on all the
above, it is quite apparent why a tumor desiring maximal glycolytic
flux would select HK-2. Finally, as a side note, HK-2 can be consid-
ered also as the most “senior” of the hexokinases as it still harbors
two catalytic sites that arose from an “ancestral glucokinase”. When
several enzymatic isoforms are available for tumor specific expres-
sion, usually the most ancestral form is selected, as these tend to
harbor a broader substrate specificity, reduced product inhibition,
higher affinity for substrate, and/or higher catalytic power.

5. Discoveries that revealed that the tumor HK-2 gene
promoter is highly “promiscuous” in facilitating
transcriptional up-regulation under both adverse and
favorable metabolic states of the host

Several systemic and cellular stimuli promote the specific
expression and transcriptional up-regulation of HK-2 (and to a
lesser extent HK-1) in highly glycolytic malignant tumors. The
first indication for enhanced transcription came via northern-blot
based mRNA expression studies [21–24]. These revealed an approx-
imately 100-fold increase in the mRNA levels for HK-2, strongly
suggesting activation and up-regulation of HK-2 gene transcrip-
tion. Based on these initial findings it became important to focus
on the characterization of the regulatory elements within the HK-2
gene promoter which up to 1990 had been reported only for HK-
4 (glucokinase) [25]. Significantly, the first cloning and sequence
analysis of the HK-2 proximal promoter [23] revealed well-defined
cis-elements for transcription initiation (TATA and CAAT elements)
indicating that transcription is strongly regulated by cellular stim-
uli (as opposed to a “housekeeping” gene that lacks the initiation
elements). Quite unexpectedly, cis-elements for activation by pro-
tein kinase-A (PKA) were the most proximal cis-elements near
the transcription initiation site, amply subverting the “textbook
expectation” of hexokinase being down-regulated by the hormone
glucagon (i.e., under conditions of starvation or low blood-glucose
levels in the host) or by signaling events initiated by glucagon (i.e.,
the cAMP initiated PKA pathway) [23]. As expected, protein kinase-
C (PKC/RAS) pathways (activated by insulin or high glucose), and
most significantly, response elements for hypoxia (HIF-1) and p53
were also located on the promoter [23,26,27]. Functional analysis
via reporter gene analysis revealed modulation of the HK-2 gene
promoter by glucose, hypoxia, cAMP analogs, and insulin, with the
latter two tacitly implicating the involvement of PKA and PKC path-
ways in up-regulating this isoform in tumors [23,28]. Since the
cis-element sequence motifs for glucose and insulin response have
not been characterized to date, their precise locations or identities
on the HK-2 promoter are yet to be identified.

Significantly, the above discoveries helped rationalize the selec-
tive expression of HK-2 by malignant tumors as part of a clever
survival mechanism that allowed the tumor to continue metaboliz-
ing glucose regardless of the nutritional status of the tumor-bearing
host. In fact, it could now be inferred why even at the terminal stages
of cancer progression in a patient (i.e., tumor induced cachexia)
the tumor will continue to scavenge glucose from the patient’s
bloodstream and thrive while the patient’s physiology progres-
sively shuts-down.
The presence or absence of specific cis-elements between the
HK-2 and HK-1 promoters helps explain the predominant expres-
sion of HK-2 in malignant tumors that exhibit the high glycolytic
phenotype in the presence of oxygen, i.e., the Warburg effect. This
argument is supported also when the proximal promoter region
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f the two hexokinases are aligned for similarity [29]. Overall,
he presence of “glycolysis-supportive” cis-elements on the HK-2
romoter are amply suited to provide a greater response in the
umor cell in response to external physiological stimuli, resulting
n greater HK-2 synthesis, which in turn facilitates and maintains a
igh flux of glucose into the tumor.

. Epigenetic and genetic factors involved in the marked
ver-expression of HK-2 in tumors—findings that revealed
hat in liver cancer cells exhibiting a pronounced Warburg
ffect the HK-2 gene is subject to both epigenetic regulation
nd regulation by amplification

Sequence analysis and comparison of the HK-2 promoters
rom normal tissue (hepatocytes) and a malignant tumor (AS-30D
epatoma) that exhibits a robust Warburg effect failed to iden-
ify any significant nucleotide differences. Less than 1% of the
ucleotide positions were altered and were not in critical cis-
lement harboring regions [30]. In addition, based on available
ata (www.ncbi.nlm.nih.gov), it is known that each of the four
exokinase isozymes is encoded by different chromosomal loci. In
umans, hexokinase genes HK-1-4 are localized on chromosome
rms 10q22, 2p13, 5q35, and 7p15, respectively. Therefore, none of
he hexokinases arise as a result of alternate exon splicing events
rom a single chromosomal locus or occur due to chromosomal
earrangements or deletions. This knowledge implicates epigenetic
vents (e.g., demethylation) and/or gene amplification as playing a
ignificant role in the up-regulation of HK-2 gene expression during
umorigenesis.

Recently it was demonstrated that the HK-2 promoter does
ndergo epigenetic changes during hepato-carcinogenesis [30].
ere, HK-4 (glucokinase), with low affinity for glucose, is expressed
xclusively in normal tissue (liver), while HK-2, with high affinity
or glucose, is markedly expressed during malignant transforma-
ion to the highly glycolytic AS-30D hepatoma [8,10]. Significantly,

ethylation analysis of the chromosomal DNA in the HK-2 gene
romoter region of normal hepatocytes and AS-30D hepatoma cells
evealed different patterns. This evidence was further supported by
isulfite mediated methylation footprint analysis, which revealed
8 methylated CpG loci within a CpG island (−350 to +781 bp) in
he hepatocyte expressed gene, while none were found in that
rom the hepatoma. Although these results indicate that one of
he epigenetic events involved in HK-2 gene over-expression dur-
ng tumorigenesis is demethylation, studies currently underway

ill have to be completed to fully identify all epigenetic events
nvolved.

Another factor that can up-regulate expression of HK-2 during
umorigenesis is gene amplification. Here the story is very clear
ith the available data showing that the latter plays a very signifi-

ant role in the enhanced expression of HK-2 in the highly glycolytic
S-30D hepatoma. This has been demonstrated both by Southern
lot analysis and fluorescence in situ hybridization (FISH analysis)
f hepatocytes and hepatoma chromosomal DNA. Significantly, the
K-2 gene is amplified by at least fivefold relative to that of normal
epatocytes [31]. This gene amplification was located within the
ame chromosomal arm, with the absence of any gene rearrange-
ents. These findings add another facet to the multiple cellular and

enetic events that facilitate the activation and over-expression of
K-2 in highly malignant tumors in support of the Warburg effect,

.e., high glycolysis to lactate even in the presence of oxygen. Evi-
ence is lacking for similar events supporting the less-prominent

K-1 expression in tumors.

In contrast to tumors like the AS-30D hepatoma, it should be
oted that most normal mammalian tissues, such as liver, express
ery little HK-2, with those from muscle, adipocytes, and lung
xpressing low but significant levels [1,3].
ncer Biology 19 (2009) 17–24

7. HK-2 as a possible metabolic and bio-energetic flux
regulator of normal tissues that is dysfunctional in tumors

With its intimate metabolic coupling to mitochondrial ATP out-
put (and the ADP input into mitochondria via “porins”, e.g., VDACs),
HK can be considered a metabolic regulator that closely balances
fluxes between glycolysis and mitochondrial respiration as dis-
cussed in a recent review by Wilson [3]. In essence, in normal tissues
where HK-2 is either silent or expressed at low levels, the phos-
phorylation rate of incoming glucose via HK-1 can be coordinated
with the rate of mitochondrial oxidative phosphorylation, such
that neither glycolysis (in this case, glucose to pyruvate metabolic
flux) nor oxidative phosphorylation (pyruvate to ATP flux) gets
“out-of-step” with the other. However, an excessive rate of gly-
colysis resulting from overexpression of HK-2 would ultimately
result in generation of lactic acid (via lactic dehydrogenase) caus-
ing lactic acidosis in tissues. This appears to be the case in tumor
tissue, indicating a deliberate uncoupling between net energy flux
via glycolysis and oxidative phosphorylation so as to favor tumor
proliferation via poisoning of the tumor microenvironment (and
the surrounding normal tissues) with both lactic acid and low pH
[32–34]. Although how the transformation of a normal cell to a
tumor cell ultimately achieves this calculated uncoupling between
glycolytic flux and mitochondrial respiration is not completely
clear, it would seem that environmental and/or dietary factors that
impact on the epigenetic regulation of HK-2 may be intimately
involved.

8. Discovery that HK-2 in addition to its growth related
roles in cancer also helps immortalize cancer cells

As noted above, HK-2 is localized predominantly on the outer
mitochondrial membrane where it is bound to one or more VDAC
proteins. Various metabolic and signal-transduction related stim-
uli have been implicated in regulating hexokinase-VDAC binding,
including intracellular lactate, pH, ATP/ADP, glucose/glucose-6-
phosphate metabolite couples, and protein kinase-B (PKB/Akt)
[35–37], among others. In addition to being critical for the unique
metabolism of many cancers, hexokinase-mitochondrial interac-
tions are now believed to be crucial also for promoting cancer
survival via modulation of signaling events related to apoptosis
[38–41]. Among cellular signaling molecules, the serine/threonine
kinase Akt (protein kinase B; PKB) is a major mid-stream effector
of growth factor-mediated cell survival. It also is a key mediator
of the glycolytic metabolic pathway [38,42,43]. Studies by Hay and
co-workers [38] showed that activated Akt functions as a potent
anti-apoptotic factor in the presence of robust glycolysis, with the
hexokinase-VDAC couple functioning as a down-stream effector for
Akt [38]. Members of the BCL2 family of proteins, which are either
anti-apoptotic (e.g. Bcl, Bcl-XL) or proapoptotic (e.g. Bax, Bak, Bad),
regulate the above process by their interactions with the protein
oligomers/protein channels that control the mitochondrial mem-
brane permeability transition (MPT) associated with the induction
of apoptosis (Fig. 2).

The anti-apoptotic phenotype is proposed to be modulated by
two mechanisms; (1) enhancement of the HK-VDAC binding affinity
to increase the mitochondrial-bound hexokinase fraction [38], and
(2) mobilization of the anti-apoptotic Bcl2 member Bcl-XL to VDAC
in the outer mitochondrial membrane (OMM) [44]. Significantly,
the method by which Akt functions as an anti-apoptotic signaling
molecule is believed to arise mainly due to its positive effect on

HK-VDAC binding. In fact, disruption of the HK-VDAC interaction
via non-Akt involved pathways, even in the absence of activation of
pro-apoptotic factors such as Bax and Bak, induces apoptosis [45].
The precise mechanism remains unknown. In fact, the most recent
literature using “gene knock-out” cells suggests that VDAC may not

http://www.ncbi.nlm.nih.gov/
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Fig. 2. Metabolic targeting strategies against malignant tumors that rely on HK-2 facilitated glycolytic flux. The pyruvate analog 3-Br-pyruvate after entering tumor cells
inhibits the function of both hexokinase-2 {1} and the ATP synthasome (ATP synthase/adenine nucleotide carrier/phosphate carrier complex) {2}. Peptide analogs of the
HK-2 N-terminal, or small-molecules clotrimazole, bifanazole or methyl jasmonate, can dislodge HK-2 from VDAC {1}, depriving HK-2 of direct access to mitochondrial
generated ATP and negating tolerance to G-6-P mediated product inhibition. Lactate efflux by the monocarboxylate transporters (MCTs) can be inhibited via small-molecule
cinnamic acid derivatives, i.e., �-cyano-4-hydroxy cinnamic acid {3} or silenced via siRNA; tumor specific lactate dehydrogenase (LDH) isoforms can be silenced via siRNA
{4}; the pyruvate analog dichloroacetate (DCA) can be administered to inhibit mitochondrial pyruvate dehydrogenase kinase (PDHK) {5}, which prevents “inactivation” of
mitochondrial pyruvate dehydrogenase (PDH). The “active” PDH facilitates a high rate of influx of pyruvate into mitochondria, with concomitant up-regulation of the TCA
cycle, resulting in an altered tumor-mitochondrial redox status; tumor specific pyruvate kinase (PK) can be silenced via siRNA to alter the glycolytic flux by inhibiting the
formation of pyruvate {6}. Each of the above steps, which either target HK-2, the first step of the glycolytic pathway, or force the re-direction of pyruvate at the ultimate
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teps of the same, result in a highly disturbed metabolic status in the tumor mitoch
f cytochrome c to the cytoplasm, which in turn activates apoptotic cascades in the

lways be involved in the induction of apoptosis, i.e., there may be
ther ways to die [46,47].

. Targeting tumors for destruction by silencing the HK-2
ranscript or via small-molecule-mediated inhibition of the
nzyme

Based on the factors discussed above it is quite evident that
knock-down” or silencing of HK-2 expression should have a dele-
erious effect on tumor proliferation. This was evaluated first
ia anti-sense RNA approaches against HK-2, where anti-sense
essages against HK-2 were expressed via retroviral-mediated

ransduction in malignant hepatoma cells (Mathupala and Peder-
en, Proc Am Assoc Can Res 1999:22 (abstract # 145)). In this study,
lthough a dramatic reduction in tumor proliferation was initially
bserved as the HK-2 message was silenced, upon continuous pas-
age, the targeted tumors recovered, most likely by up-regulating
r stabilizing the HK-2 message. Thus, these preliminary studies

ndicated the propensity by tumors to rapidly compensate for any
eleterious effects at the transcriptional level; indicating that high
ffinity inhibitory molecules that can rapidly and irreversibly target
he enzyme itself are necessary to disrupt the “Warburg effect” in
uch tumors.
a. This likely activates disruption of mitochondrial membrane integrity and release
ed tumor cells (MPTP, mitochondrial permeability transition pore).

This was subsequently accomplished a few years later by uti-
lizing a “non-metabolizable” small-molecule analog of pyruvate,
3-bromopyruvate [48] to simultaneously target both mitochondria-
bound HK-2 (among other hexokinases) and mitochondrial
metabolism itself. Such studies demonstrated clearly that this
small-molecule based HK-2/mitochondrial targeting strategy is
highly effective in tumor implanted animal models in ameliorating
the “Warburg” phenotype to bring about tumor cell death (Fig. 3).
In fact, advanced cancers in all 19 animals subjected to treatment
with 3-bromopyruvate were eradicated [49]. Pre-clinical studies
utilizing 3-bromopyruvate against a multitude of tumors are cur-
rently being conducted in many laboratories, e.g., [50,51], indicating
the universal interest in applying this metabolic targeting strategy
to eradicate malignant tumors (which are frequently refractory to
standard therapeutic regimens).

10. Releasing HK-2 from the VDAC anchor to disrupt tumor
glycolysis
Based on current inferences on the HK-2/VDAC interaction in
preventing tumor apoptosis, disruption of the same should facil-
itate tumor apoptosis. This in fact has been tested with several
compounds that reportedly disrupt the VDAC-HK-2 interaction.
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Fig. 3. Potent anticancer effect of 3-bromopyruvate. Notably, of all the anti-cancer agents noted in the legend to Fig. 2, 3-bromopyruvate has been the most effective in
completely eradicating tumors in immuno-competent animals. Significantly, this tiny agent induces a rapid loss of cellular ATP in those tumors that exhibit a robust Warburg
effect, and its mode of action extends beyond apoptotic effects per se and likely involves a combination of apoptotic and necrotic events. In the figure 3-bromopyruvate
c uman
3 or his
f urn of

A
c
p
[
t
m
t
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ompletely eradicates a large rat hepatocellular carcinoma {A} that projected on a h
weeks with no recurrence {C}, the animal living out a normal life thereafter. Tum

reed of advanced cancer. All cancer free animals lived out a normal life without ret

mong the compounds tested are the antifungal compounds
lotrimazole and bifanazole [52], methyl jasmonate [53], and
eptide sequences that correspond to the HK-2 N-terminal
45,46]. In each case, induction of apoptosis was observed in
he targeted tumors indicating that such a “release” strategy

ay also be effective against highly glycolytic tumors. However,

he latest reports, at least on use of clotrimazole [46] indi-
ate the effect of these antifungals may be independent of the
nvolvement of VDAC. Thus, further analysis is needed on the
pecificity of these compounds in targeting glycolysis of tumor
ells.
{B} would be the size of a large “grapefruit”. Complete eradication was obtained in
topathology of the untreated animal {D}. In the same study 18 other animals were
cancer (permission granted from Elsevier to reproduce Fig. 2 from Ref. [49]).

11. The penultimate step in glycolysis—mitochondrial
pyruvate metabolism and the Warburg effect

In contrast to the above approaches, others have examined the
feasibility of targeting alternate steps of the glycolytic pathway
as a mode of disrupting energy metabolism in malignant tumors

[34,54–56] (Fig. 2). These have included (1) inhibition of lactic acid
efflux from tumors by silencing or inhibiting lactate transporters
via interfering RNA or cinnamic acid derivatives (ACCA) [34,55,56],
(2) up-regulation of the influx of pyruvate into mitochondria by
inhibiting pyruvate dehydrogenase kinase (PDK) via the 2-carbon
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pyruvate analog” dichroloacetate (DCA) [54,57], (3) inhibition of
umor expressed lactate dehydrogenase (LDH) isoforms via RNA
nterference to inhibit pyruvate to lactate conversion, with con-
omitant enhancement of mitochondrial pyruvate influx [58,59],
nd (4) switching between tumor expressed pyruvate kinase iso-
orms, again through RNA interference, to alter the kinetics of
yruvate synthesis [60].

Relying on mitochondrial-bound HK-2 to coerce glucose down
he metabolic steps toward mitochondrial respiration, most of these
tudies focus on the metabolic re-routing of pyruvate away from
actic acid formation and back to the mitochondria, in order to
isturb the “aberrant respiratory homeostasis” of tumors. Of the
bove four strategies, the DCA mediated tumor targeting (by up-
egulating mitochondrial pyruvate entry) strategy is currently in
hase I/II clinical studies.

2. Concluding remarks and prospects for the future

The work of a handful of dedicated, if not stubborn, tumor
etabolism research groups over the past seven decades have sys-

ematically unraveled the biochemical choreography that exists
etween signal transduction cascades and metabolic pathways in
umors to promote malignancy (i.e., proliferation). A first benefit to
ancer patients has been the utilization of the high glucose influx
f malignant tumors via mitochondrial-bound hexokinase (HK-2
nd to some extent HK-1) as a tool to develop radio-labeled glu-
ose analogs for in vivo imaging of tumors via PET, which has now
ecome a universal mode of tumor detection and staging. With the
ealization that hexokinase-mitochondrial interactions are crucial
or tumor immortality and that small-molecule metabolite analogs
an disrupt the tumors via multiple metabolic “target-points”, a
ew class of potential anti-cancer therapies have appeared on
he horizon. These are capable of usurping the tumors’ aberrant

etabolic machinery to re-direct the metabolites and cause self-
estruction of the tumor. The sentinel enzyme that will likely

acilitate the success or failure of these novel approaches will be
itochondrial-bound hexokinase (predominantly HK-2), straddled

etween the cytosolic and mitochondrial spaces in malignant cells
hile driving the first and committed step of glycolysis.
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